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Abstract—The Koetter-Vardy (KV) algorithm achieves ad-
vanced decoding performance for Reed-Solomon (RS) codes but
with a high computational cost. This paper studies the low-
complexity KV decoding that utilizes the module minimization
(MM) interpolation technique, namely the KV-MM algorithm.
A module contains bivariate polynomials that interpolate all
the prescribed points with their multiplicity. Presenting the
module basis as a matrix over univariate polynomials, row
operation further reduces it into the Gröbner basis, delivering the
interpolated polynomial. We will also introduce the re-encoding
transformed KV-MM algorithm by giving an explicit construction
for the module basis. This research shows MM interpolation
yields a remarkably lower complexity for KV decoding than
the conventional Koetter’s interpolation, especially for high rate
codes. This is also true when the re-encoding transform is applied.
This finding is a rectification of some earlier results.

Index Terms—Complexity reduction, Koetter-Vardy algorithm,
module minimization, Reed-Solomon codes

I. INTRODUCTION

Reed-Solomon (RS) codes are widely used in data com-
munication systems and storage devices. In practice, the
Berlekamp-Massey (BM) algorithm [1] is used for decoding.
However, its error-correction capability is limited by half of the
code’s minimum Hamming distance. In late 90s, Guruswami
and Sudan introduced the algebraic decoding algorithm, the so-
called GS algorithm, which corrects errors beyond the above
limit [2]. It has two steps, interpolation and root-finding.
Koetter and Vardy [3] further introduced the algebraic soft
decoding, the so-called KV algorithm. It yields remarkable
performance gains over the BM and the GS algorithms with
a polynomial-time complexity.

However, the algebraic decoding complexity is still orders
of magnitude higher than the BM algorithm. This is due to
the interpolation that is often realized by Koetter’s iterative
polynomial construction approach [4]. There exist several
approaches to facilitate the interpolation, e.g., the re-encoding
transform [5] and the progressive decoding [6]. It has been
reported that the interpolation problem can also be solved from
the perspective of Gröbner basis of module [7]. It formulates
a basis of module which contains bivariate polynomials that
interpolate all the prescribed points. The basis will then be
reduced into the Gröbner basis which contains the interpolated
polynomial. This interpolation technique is called the module
minimization (MM) which refers to the basis reduction pro-
cess. It can be further facilitated by several recent techniques

[8] [9]. So far, performing the KV decoding using the MM
technique has been sparsely reported in [7] [10], with its re-
encoding transformed variant in [11] [12].

However, this MM based KV decoding still demands a
more comprehensive study. On one hand, an explicit module
basis construction is still needed, especially for the re-encoding
transformed KV-MM algorithm. On the other hand, the com-
plexity reduction effect brought by the MM interpolation
and the re-encoding transform remains unknown for practical
codes. Therefore, this paper provides a thorough research of
the KV-MM algorithm and its re-encoding transformed variant.
We will give an explicit module basis construction for both the
KV-MM algorithm and its re-encoding transformed variant.
To facilitate the understanding, the module basis construction
will be illustrated by work examples. A simpler proof of the
module generators is given. We will show that re-encoding
transform reduces the MM complexity by reducing the degree
of module generators. It should be pointed out that the earlier
work [11] showed when only considering the finite field
multiplication, the re-encoding transformed KV-MM algorithm
yields a higher complexity than the case using Koetter’s inter-
polation. However, our research shows by counting both finite
field addition and multiplication, the MM interpolation can
significantly reduce the decoding complexity over Koetter’s
interpolation, despite whether the re-encoding transform is
applied. Especially for high rate codes, a complexity reduction
of at least an order of magnitude can be achieved. To the best
of our knowledge, this has never been reported in literature.

II. PREREQUISITE KNOWLEDGE

This section introduces some prerequisite knowledge for the
paper, including RS codes and the KV decoding.

A. RS Codes

Let Fq = {σ0, σ1, . . . , σq−1} denote a finite field of size
q, and Fq[x] and Fq[x, y] denote the univariate and bivariate
polynomial rings defined over Fq , respectively. For an (n, k)
RS code, where n = q− 1 and k are length and dimension of
the code, respectively, message polynomial f(x) ∈ Fq[x] can
be written as

f(x) = f0 + f1x+ · · ·+ fk−1x
k−1, (1)
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where f0, f1, . . . , fk−1 are message symbols. Codeword c =
(c0, c1, . . . , cn−1) ∈ Fnq is generated by

c = (f(α0), f(α1), . . . , f(αn−1)), (2)

where α0, α1, . . . , αn−1 are the n distinct nonzero elements
of Fq . They are called code locators.

B. The KV Decoding

Assume codeword c = (c0, c1, . . . , cn−1) is transmitted
through a memoryless channel and r = (r0, r1, . . . , rn−1) ∈
Rn is the received vector. A q × n reliability matrix Π can
be obtained based on r. Its entry πij = Pr[cj = σi | rj ] is
the symbol wise a posteriori probability (APP) 1. Matrix Π
will be transformed into a multiplicity matrix M of the same
size [3]. For M, its entry mij is the interpolation multiplic-
ity for point (αj , σi). Interpolation determines the minimum
polynomial Q(x, y) that interpolates all prescribed points with
their multiplicity. Let ij = index{σi | σi = cj}, the codeword
score is defined as SM(c) =

∑n−1
j=0 mijj . Given a polynomial

Q(x, y) =
∑
a,bQabx

ayb ∈ Fq[x, y], its monomials xayb

can be organized under the (µ, ν)-revlex order 2. Let xa
′
yb
′

denote the leading monomial of Q where Qa′b′ 6= 0, the
(µ, ν)-weighted degree of Q is degµ,ν Q = degµ,ν x

a′yb
′
.

Furthermore, given polynomials Q1 and Q2 whose leading
monomials are xa

′
1yb
′
1 and xa

′
2yb
′
2 , respectively, it is claimed

Q1 < Q2 if xa
′
1yb
′
1 < xa

′
2yb
′
2 . What follows is a sufficient

condition for a successful KV decoding.
Theorem 1 [3]. For an (n, k) RS code, let Q ∈ Fq[x, y]

denote an interpolated polynomial constructed based on M. If
SM(c) > deg1,k−1Q(x, y), Q(x, f(x)) = 0.

Interpolation finds the above polynomial Q with the min-
imum (1, k − 1)-weighted degree. This is often realized by
Koetter’s algorithm [4] which is an iterative polynomial con-
struction process. Root-finding further determines y-roots of Q
which may contain the intended message f(x) [13]. Hence, the
maximum decoding output list size (OLS) would be degy Q.
A larger y-degree yields a stronger error-correction capability,
but it also implies a higher complexity in computing Q. In
this paper, we let l = degy Q to be the decoding parameter.

III. THE KV-MM ALGORITHM

This section introduces the KV-MM algorithm, where the
MM interpolation consists of module formulation and mini-
mization. We first introduce the module for the KV decoding.

A. Module and the Gröbner Basis

For KV decoding with a maximum decoding OLS of l, a
module Ml is needed. It is defined as follows.

Definition I. Module Ml is the space of all polynomials
over Fq[x, y] that interpolate all points (αj , σi) with a multi-
plicity of mij (mij 6= 0). Their maximum y-degree is l.

1It is assumed that Pr[cj = σi] = 1
q
, ∀(i, j).

2The (µ, ν)-weighted degree of xayb is degµ,ν x
ayb = µa+ νb. Given

two monomials xa1yb1 and xa2yb2 , it is claimed xa1yb1 < xa2yb2 , if
degµ,ν x

a1yb1 < degµ,ν x
a2yb2 , or degµ,ν x

a1yb1 = degµ,ν x
a2yb2

and b1 < b2.

Ml can be formulated by l + 1 generators Pt(x, y) where
t = 0, 1, . . . , l. They define the basis of the module. This
basis Bl can be presented as a matrix over Fq[x]. For this
presentation, vectors over Fq[x] need to be defined.

Definition II. Let ξ = (ξτ (x), τ = 0, 1, . . .) denote a vector
over Fq[x], the degree of ξ is

deg ξ = max{deg ξτ (x),∀τ}. (3)

The leading position (LP) of ξ is

LP(ξ) = max{τ | deg ξτ (x) = deg ξ}. (4)

Since ξτ (x) = ξ
(0)
τ + ξ

(1)
τ x + · · · + ξ

(deg ξτ (x))
τ xdeg ξτ (x), the

leading term (LT) of ξτ (x) is

LT(ξτ (x)) = ξ(deg ξτ (x))
τ xdeg ξτ (x). (5)

Given a matrix V over Fq[x], we denote its row-t as V|t and
its entry of row-t column-τ as V|(τ)

t . For a module generator
Pt(x, y) =

∑
τ≤l P

(τ)
t (x)yτ where P

(τ)
t (x) ∈ Fq[x], it can

be presented as a vector over Fq[x], i.e., (P
(0)
t (x), P (1)

t (x),
. . ., P (l)

t (x)). Therefore, basis Bl can be presented as a matrix
over Fq[x] by letting Bl|(τ)

t = P
(τ)
t (x),∀(t, τ). Note that Bl

is a square matrix, which will become clear in Section III.B.
Definition III [14]. Given a square matrix V over Fq[x], if

it exhibits LP(V|t) 6= LP(V|t′) for any two rows V|t and V|t′ ,
it is in the weak Popov form.

Given basis Bl, it will be transformed into the Gröbner
basis. The following Proposition gives a simple criterion for
the Gröbner basis of Ml.

Proposition 2 [7]. Assume that {gt ∈ Fq[x, y], 0 ≤ t ≤ l}
generates module Ml. Under the (µ, ν)-revlex order, if y-
degree of leading monomial of each polynomial gt is different,
{gt ∈ Fq[x, y], 0 ≤ t ≤ l} is a Gröbner basis of Ml.

After constructing basis Bl, the MS algorithm [14] will
reduce it into the Gröbner basis that is defined under (1, k−1)-
revlex order. Before that, the mapping of

Al = Bl · diag(1, xk−1, . . . , xl(k−1)) (6)

will be performed. It enables degAl|t = deg1,k−1 Pt(x, y).
The MS algorithm then reduces Al into the weak Popov
form A′l as follows. Find two rows Al|t and Al|t′ such that
degAl|t ≤ degAl|t′ and LP(Al|t) = LP(Al|t′), and perform

Al|t′ = Al|t′ −
LT(Al|(LP(Al|t′ ))

t′ )

LT(Al|(LP(Al|t))
t )

· Al|t. (7)

Iterate this row operation until the weak Popov form A′l is
reached. Afterwards, demap A′l as

B′l = A′l · diag(1, x−(k−1), . . . , x−l(k−1)). (8)

Now, B′l becomes a Gröbner basis. Let P ′t (x, y) be the
polynomial that is retrieved from B′l|t by P

′(τ)
t (x) = B′l|

(τ)
t .

Note that deg1,k−1 P
′
t (x, y) = degA′l|t = degA′l|

(LP(A′l|t))
t =

degP
′(LP(A′l|t))
t (x)+(k−1)·LP(A′l|t). When A′l is in the weak

Popov form, y-degree of each polynomial’s leading monomial,
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0 0 0 0 0 0 0
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0 0 0 0 3 0
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Fig. 1. (a) Multiplicity matrix; (b) Enumeration lists; (c) Balanced lists; (d) Transformed lists.

TABLE I
GENERATORS OFMl

P0(x, y) = (x− α0)4(x− α1)3(x− α2)4(x− α3)4(x− α4)3(x− α5)2(x− α6)2

P1(x, y) = (x− α0)3(x− α1)2(x− α2)3(x− α3)3(x− α4)2(x− α5)2(x− α6)(y − F0(x))
P2(x, y) = (x− α0)2(x− α1)(x− α2)2(x− α3)2(x− α4)(x− α5)(x− α6)(y − F0(x))(y − F1(x))
P3(x, y) = (x− α0)(x− α1)(x− α2)(x− α3)(x− α4)(x− α5)(y − F0(x))(y − F1(x))(y − F2(x))
P4(x, y) = (y − F0(x))(y − F1(x))(y − F2(x))(y − F3(x))

F0(x) = σ7Φ0(x) + σ6Φ1(x) + σ6Φ2(x) + σ1Φ3(x) + σ2Φ4(x) + σ4Φ5(x) + σ3Φ6(x)
F1(x) = σ7Φ0(x) + σ6Φ1(x) + σ6Φ2(x) + σ1Φ3(x) + σ2Φ4(x) + σ6Φ5(x) + σ3Φ6(x)
F2(x) = σ7Φ0(x) + σ6Φ1(x) + σ6Φ2(x) + σ1Φ3(x) + σ2Φ4(x) + σ4Φ5(x) + σ2Φ6(x)
F3(x) = σ7Φ0(x) + σ3Φ1(x) + σ6Φ2(x) + σ1Φ3(x) + σ4Φ4(x) + σ6Φ5(x)

i.e., LP(A′l|t), is different. Based on Proposition 2, B′l is a
Gröbner basis.

There exist several fast basis reduction approaches [8]–[10].
However, our research has shown for practical codes, e.g., the
(255, 239) RS code, the MS algorithm requires less finite field
arithmetic operations than the Alekhnovich algorithm [10].

B. Module Formulation and Minimization

Given matrix M, we first define

mj =

q−1∑
i=0

mij (9)

and m = max{mj ,∀j}. The Π → M transform terminates
when m = l. To formulate Ml, the following point enumera-
tion is needed. Let Lj denote an enumeration list that is drawn
from column j of M as

Lj = [(αj , σi), . . . , (αj , σi)︸ ︷︷ ︸
mij

,∀i and mij 6= 0]. (10)

Note that |Lj | = mj . Its balanced list L′j is further created
as follows. Initialize L′j = ∅. Move one of the most frequent
elements from Lj to L′j . Repeat this process mj times until
Lj = ∅. We denote the balanced list as

L′j = [(αj , y
(0)
j ), (αj , y

(1)
j ), . . . , (αj , y

(mj−1)
j )], (11)

where y
(0)
j , y

(1)
j , . . . , y

(mj−1)
j ∈ Fq and they may not be

distinct. Further let

mj(t) = max{multi.((αj , y
(ε)
j )) | ε = t, t+ 1, . . . ,mj − 1}.

(12)
Note that mj(0) = max{mij ,∀i} and mj(ε) = 0 for ε ≥ mj .

The following example illustrates the above definitions.
Example 1. In decoding a (7, 5) RS code, the multiplicity

matrix M is given as in Fig. 1 (a). The enumeration lists
L0 ∼ L6 and their balanced lists L′0 ∼ L′6 are shown in
Figs. 1 (b) and 1 (c), respectively. When t = 0, m0(0) = 4,
m1(0) = 3, m2(0) = 4, m3(0) = 4, m4(0) = 3, m5(0) = 2
and m6(0) = 2. When t = 1, m0(1) = 3, m1(1) = 2, m2(1) =
3, m3(1) = 3, m4(1) = 2, m5(1) = 2 and m6(1) = 1.

Now, module Ml can be formulated. Let

Fε(x) =
n−1∑
j=0

y
(ε)
j Φj(x), (13)

where ε = 0, 1, . . . , l − 1 and Φj(x) =
∏n−1
j′=0,j′ 6=j

x−αj′
αj−αj′

is the Lagrange basis polynomial. It holds Φj(αj) = 1 and
Φj(αj′) = 0, ∀j′ 6= j. Hence, Fε(αj) = y

(ε)
j ,∀j. Polynomial

y−Fε(x) interpolates points (αj , y
(ε)
j ),∀j. Note that if mj < l,

we assume y(ε)
j = 0 for ε ≥ mj . Consequently, Ml can be

generated as an Fq[x]-module by

Pt(x, y) =

n−1∏
j=0

(x− αj)mj(t)
t−1∏
ε=0

(y − Fε(x)), (14)



where t = 0, 1, . . . , l. It can be seen that
∏t−1
ε=0(y − Fε(x))

interpolates the first t points of all balanced lists while∏n−1
j=0 (x − αj)mj(t) interpolates the remaining points. Since

degy Pt(x, y) ≤ l,∀t, recalling Definition I, Pt(x, y) ∈Ml.
The following example further illustrates the above men-

tioned module formulation.
Example 2. Based on the balanced lists of Example 1, Table

I shows the module generators in decoding the RS code.
Theorem 3. Any element ofMl can be written as an Fq[x]-

linear combination of Pt(x, y).
Proof: Let Qt(x, y) =

∑t
τ=0Q

(τ)
t (x)yτ ∈ Ml where

degyQt = t, it satisfies
∏n−1
j=0 (x − αj)

mj(t)|Q(t)
t (x) [10].

Assume Q(x, y) ∈ Ml and let us write (14) as Pt(x, y) =∑t
τ=0 P

(τ)
t (x)yτ . When t = l, P (l)

l (x) = 1, there exists
a polynomial pl(x) ∈ Fq[x] that enables Ql−1(x, y) =
Q(x, y)−pl(x)Pl(x, y) such that degyQl−1 = l−1. Note that
if degyQ < l, pl(x) = 0. Since (Q, Pl) ∈ Ml, Ql−1 ∈ Ml.
When t = l − 1, P (l−1)

l−1 (x) =
∏n−1
j=0 (x − αj)

mj(l−1) and∏n−1
j=0 (x− αj)mj(l−1)|Q(l−1)

l−1 (x). Therefore, we can generate
Ql−2(x, y) by Ql−2(x, y) = Ql−1(x, y)− pl−1(x)Pl−1(x, y)
such that degyQl−2 = l − 2. Following the above deduction
until t = 0, we have P

(0)
0 (x) =

∏n−1
j=0 (x − αj)

mj(0) and∏n−1
j=0 (x − αj)

mj(0)|Q(0)
0 (x). Hence, there exists p0(x) that

enables Q0(x, y)−p0(x)P0(x, y) = 0. Therefore, if Q ∈Ml,
it can be written as an Fq[x]-linear combination of Pt(x, y).

Theorem 3 reveals that Pt(x, y) of (14) forms a basis Bl of
Ml. Since degy Pt(x, y) ≤ l, Bl can be presented as an (l +
1)× (l+1) square matrix over Fq[x]. Perform the mapping of
(6) to yield Al. The MS algorithm reduces Al into A′l. Demap
it as (8) and B′l is the Gröbner basis. Let A′l|t∗ denote the
minimum row of A′l, the interpolated polynomial Q(x, y) =∑
τ≤lQ

(τ)(x)yτ can be retrieved from B′l|t∗ by

Q(τ)(x) = B′l|
(τ)
t∗ . (15)

The root-finding further determines y-roots of Q, yielding the
estimated message polynomial f̂(x).

The KV-MM algorithm is summarized as follows.

Algorithm 1 The KV-MM Algorithm
Input: M, l;
Output: f̂(x);

1: Create all balanced lists L′j as in (11);
2: Formulate Bl by (14) and map it to Al by (6);
3: Reduce Al into A′l and demap it to B′l by (8);
4: Construct Q by (15);
5: Retrieve y-roots of Q to find f̂(x).

IV. THE RE-ENCODING TRANSFORMED KV-MM

This section introduces the re-encoding transformed KV-
MM algorithm that yields a further reduced complexity.

A. Re-encoding Transform

Re-encoding transform will result in reducing the x-degree
of module generators. This leads to a smaller MS com-
plexity. Let us sort m0(0),m1(0), . . . ,mn−1(0) to obtain an
index sequence j0, j1, . . . , jn−1, which indicates mj0(0) ≥
mj1(0) ≥ · · · ≥ mjn−1(0). Let Υ = {j0, j1, . . . , jk−1} and
Ῡ = {jk, jk+1, . . . , jn−1}. The k points (αj , y

(0)
j ) where

j ∈ Υ are chosen to construct the re-encoding polynomial

H(x) =
∑
j∈Υ

y
(0)
j

∏
j′∈Υ,j′ 6=j

x− αj′
αj − αj′

. (16)

Hence, H(αj) = y
(0)
j ,∀j ∈ Υ. All interpolation points

(αj , y
(ε)
j ) in the balanced lists are transformed by

(αj , w
(ε)
j ) = (αj , y

(ε)
j −H(αj)). (17)

Note that for j ∈ Υ, if y(ε)
j = y

(0)
j , w(ε)

j = 0.

B. Module Formulation and Minimization

The module will be formulated based on the transformed
balanced lists. Let Λε = {j | w(ε)

j = 0, j ∈ Υ} and Λ̄ε =

Υ\Λε. With the transformed points (αj , w
(ε)
j ), polynomials

Fε(x) of (13) is redefined as

Fε(x) =
n−1∑
j=0

w
(ε)
j Φj(x). (18)

Let
φ(x) =

∏
j∈Υ

(x− αj)mj(0) (19)

and
ψ(x) =

∏
j∈Υ

(x− αj). (20)

The following Theorem reveals the property of module gen-
erators (14) when the re-encoding transform is applied.

Theorem 4. Given matrix M and the transformed balanced
lists, φ(x)|Pt(x, yψ(x)).

Proof: The proof is given in Appendix A of [15].
Therefore, we can define the following bijective mapping

ϕ : Ml → Fq[x, y]

Pt(x, y) 7→ φ(x)−1Pt(x, yψ(x)),
(21)

where ϕ is an isomorphism betweenMl and ϕ(Ml). Polyno-
mials of ϕ(Ml) have lower x-degree than those ofMl. Since
the MS basis reduction algorithm performs linear combination
between its polynomials, the mapping of (21) will result in a
simpler basis reduction process.

Further let

w̃
(ε)
j =

w
(ε)
j

ζj
, (22)

where ζj =
∏n−1
j′=0,j′ 6=j(αj − αj′), we define

Tε(x) =
∑

j∈Ῡ∪Λ̄ε

w̃
(ε)
j

∏
j′∈Ῡ∪Λ̄ε,j′ 6=j

(x− αj′). (23)



TABLE II
GENERATORS OF ϕ(Ml)

P̃0(x, y) = (x− α5)2(x− α6)2 T0(x) = σ7
ζ5

(x− α6) + σ5
ζ6

(x− α5)

P̃1(x, y) = (x− α5)2(x− α6)(y − T0(x)) T1(x) = σ5
ζ5

(x− α6) + σ5
ζ6

(x− α5)

P̃2(x, y) = (x− α5)(x− α6)(y − T0(x))(y − T1(x)) T2(x) = σ7
ζ5

(x− α6) + σ4
ζ6

(x− α5)

P̃3(x, y) = (x− α1)(x− α4)(x− α5)(y − T0(x))(y − T1(x))(y − T2(x)) T3(x) = σ5
ζ1

(x− α4)(x− α5)(x− α6) + σ6
ζ4

(x− α1)(x− α5)

P̃4(x, y) = (y − T0(x))(y − T1(x))(y − T2(x))(y(x− α1)(x− α4)− T3(x)) (x− α6) + σ5
ζ5

(x− α1)(x− α4)(x− α6)

The proof of Theorem 4 shows that generators of ϕ(Ml) can
be constructed by

P̃t(x, y) =
∏
j∈Ῡ

(x− αj)mj(t) ·
∏
j∈Λ̄t

(x− αj)

·
t−1∏
ε=0

(
y
∏
j∈Λ̄ε

(x− αj)− Tε(x)
)
, (24)

where t = 0, 1, . . . , l. Note that Λ̄l = ∅. Based on Theorem
3 and (21), we know (24) also forms a basis B̃l of ϕ(Ml).
Again, it can be presented as a square matrix over Fq[x].

The following example further illustrates the above module
formulation.

Example 3. We continue from Example 1. By sorting
m0(0),m1(0), . . . ,m6(0), we have Υ = {0, 1, 2, 3, 4} and
Ῡ = {5, 6}. Hence, (α0, σ7), (α1, σ6), (α2, σ6), (α3, σ1)
and (α4, σ2) are chosen to generate the re-encoding poly-
nomial H(x) = σ1 + σ5x

2 + σ3x
3 3. The transformed

balanced lists L′0 ∼ L′6 are shown in Fig. 1 (d). We define
φ(x) = (x − α0)4(x − α1)3(x − α2)4(x − α3)4(x − α4)3

and ψ(x) = (x − α0)(x − α1)(x − α2)(x − α3)(x − α4).
Generators of ϕ(Ml) are shown in Table II. Compared with
Table I, module generators of ϕ(Ml) have smaller x-degree
than those of Ml.

After the re-encoding transform, polynomials are ordered
under the (1,−1)-revlex order [5]. However, performing Al =
B̃l · diag(1, x−1, . . . , x−l) causes some of the basis entries
leaving Fq[x]. Alternatively, Al will be generated by

Al = B̃l · diag(xl, xl−1, . . . , 1), (25)

such that degAl|t = deg1,−1 P̃t(x, y) + l. The MS algorithm
further reduces Al into A′l. Demap it as

B̃′l = A′l · diag(x−l, x−(l−1), . . . , 1). (26)

Again, if A′l|t∗ is the minimum row, polynomial Q̃(x, y) =∑
τ≤l Q̃

(τ)(x)yτ can be retrieved from B̃′l|t∗ by Q̃(τ)(x) =

B̃′l|
(τ)
t∗ . Based on (21), the interpolated polynomial Q will be

restored by
Q(x, y) = φ(x)Q̃

(
x,

y

ψ(x)

)
. (27)

If f ′(x) is a y-root of Q, the estimated message f̂(x) is
obtained by f̂(x) = f ′(x) +H(x).

3It is assumed F8 is defined by the primitive polynomial δ3+δ+1, where δ
is the primitive element. Moreover, F8 = {σ0, σ1, σ2, σ3, σ4, σ5, σ6, σ7} =
{0, 1, δ, δ3, δ2, δ6, δ4, δ5}.

The re-encoding transformed KV-MM algorithm is summa-
rized as follows.

Algorithm 2 The Re-encoding Transformed KV-MM
Input: M, l;
Output: f̂(x);

1: Generate all balanced lists L′j as in (11);
2: Sort m0(0),m1(0), . . . ,mn−1(0) and define Υ;
3: Transform all interpolation points as in (17);
4: Formulate B̃l by (24) and map it to Al by (25);
5: Reduce Al into A′l and demap it to B̃′l by (26);
6: Determine Q as in (27);
7: Retrieve y-roots of Q to further determine f̂(x).

V. DECODING PERFORMANCE AND COMPLEXITY

This section provides the decoding frame error rate (FER)
and complexity performances of the KV-MM algorithms. They
are compared with the KV algorithms that employ Koetter’s
interpolation, which are denoted as the KV-Koetter algorithms.
In this paper, complexity is measured as the number of finite
field arithmetic operations (multiplication and addition) in
decoding a codeword, including the root-finding and the re-
encoding transform. Our numerical results are obtained over
the additive white Gaussian noise (AWGN) channel using
BPSK modulation.
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Fig. 2. Performance of the (255, 239) RS code.

Fig. 2 shows the KV-MM performance of the popular (255,
239) RS code. It can be seen that the KV-MM algorithm



TABLE III
KV DECODING COMPLEXITY OF SEVERAL RS CODES

l = 4 l = 8
(63, 31) (63, 55) (255, 144) (255, 239) (63, 31) (63, 55) (255, 144) (255, 239)

without
re-encoding

KV-MM
KV-Koetter

1.82× 106 1.15× 106 3.13× 107 2.75× 107 3.01× 107 1.56× 107 5.04× 108 3.33× 108

1.59× 107 1.92× 107 8.58× 108 1.10× 109 3.50× 108 4.06× 108 1.99× 1010 2.47× 1010

with
re-encoding

KV-MM
KV-Koetter

1.48× 106 5.87× 105 2.02× 107 1.63× 107 1.11× 107 4.10× 106 2.54× 108 1.27× 108

6.16× 106 3.92× 106 1.69× 108 1.06× 108 1.10× 108 4.31× 107 2.91× 109 3.24× 108

outperforms the BM and the GS algorithms, where the GS
algorithm decodes with an interpolation multiplicity of one.
The performance gain can be improved by increasing the
decoding parameter l, i.e., degy Q. However, this will be at
the cost of decoding complexity.

The KV-MM complexity is dominated by the interpolation
which contains module formulation and minimization. Our
analysis [15] shows that when l is sufficiently large, the
module minimization dominates the complexity. Therefore,
when l is sufficiently large, the interpolation complexity is
characterized by the MS algorithm. This will be determined
by degAl|(τ)

t and the number of row operations for reducing
Al into A′l. In [15], we analyze that without the re-encoding
transform, degAl|(τ)

t ≤ nl, and with the re-encoding trans-
form, degAl|(τ)

t ≤ (n− k+ 1)l. In both cases, the number of
row operations is upper bounded by 1

2 (n−k)(l+1)3. Since Al
is an (l+1)×(l+1) matrix over Fq[x], without the re-encoding
transform, the MS complexity is 1

2n(n− k)(l+ 1)5. With the
re-encoding transform, it is reduced to 1

2 (n − k)2(l + 1)5.
Therefore, re-encoding transform yields a complexity reduc-
tion factor of k

n . More importantly, the analysis shows both
the MM interpolation and the re-encoding transform are more
effective in yielding a low complexity for high rate codes,
which is of practical interest.

Table III shows our numerical results of KV decoding of
several RS codes. Without the re-encoding transform, the KV-
MM algorithm is less complex than the KV-Koetter algorithm
by at least an order of magnitude. High rate codes exhibit
a smaller KV-MM complexity, which is opposite to the KV-
Koetter algorithm. The re-encoding transform further reduces
the KV-MM and the KV-Koetter complexity. In this case,
decoding high rate codes would be less complex in using
both interpolation techniques. This is because the complexity
reduction essentially comes from k re-encoding points. The
complexity reduction factor of k

n holds for both the KV-
MM and the KV-Koetter algorithms. Moreover, the KV-MM
algorithm is still less complex than the KV-Koetter algorithm.
This is a rectification of the earlier results of [11] which only
considered finite field multiplication.

VI. CONCLUSIONS

This paper has introduced the low-complexity KV-MM
algorithms for RS codes. Explicit constructions for module
basis have been presented and illustrated by work examples.
Our analysis and numerical results have verified their low-

complexity feature in comparison with the cases using Koet-
ter’s interpolation. We have also shown that both the MM
interpolation and the re-encoding transform are more effective
in yielding a low complexity for high rate codes. These results
fall into the interest of practical applications in which high rate
codes are favored.
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